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1. Introduction

Neuromorphic computing, a novel concept proposed in 1990s,
suggests that future computer system can imitate the operation
principles of human brains by processing analog signals in par-
allel directly on the physical level.[1] It is a promising way to move
beyond the deterministic von Neumann model of computation
due to its three significant advantages—high parallelism, low
power consumption, and in-memory computing[2]—and can
be included in a Shannon-inspired statistical computation
model.[3] Guided by information theory, it is possible to explore
its design principles of circuits and architectures that approach
the limits of energy efficiency, latency, and accuracy. This is

exactly an inspiration to establish a com-
plete set of new mathematical tools to
analyze and estimate future neuromorphic
computing systems.

A memristor, proposed in 1971[4] and
experimentally established in 2008,[5] is a
resistive device as an optimized future
neuromorphic device to this kind of non-
von Neumann computing. Memristor can
change its resistance according to the inte-
rior state and the exterior stimulation, such
as voltage pulse. Previous studies have
shown that a crossbar structure based on
memristors can accelerate various artificial
neural networks (ANNs) by directly map-
ping vector-matrix multiplication (VMM), a
most intensive computing component, to
electrical parameters relying on Ohm’s
law and Kirchhoff’s law.[6,7] Under this
principle, the VMM computing process
directly happened in situ, thus avoiding

the memory wall (von Neumann Bottleneck) caused by fetching
data frommemory. Especially in supervised learning, it can reduce
the computational complexity of feed forward process and back-
propagation from NP to P.[8] Therefore, current studies mostly
focus on classification and regression tasks to make use of this
new computing mechanism as a complement to complementary
metal oxide semiconductor (CMOS) circuits. However, different
physical mechanisms of memristors, such as conducting filament
formation/dissolution and phase change, decide that there are
device imperfections that require further optimizations.[9,10]

Therefore, many theoretical models have been set up to analyze
the influence of device imperfect characteristics,[11–13] such as
number of weight states, nonlinearity, asymmetry, variation,
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To approach an advanced neuromorphic system, a significant unsettled problem
is how to realize biologically plausible memory structures that are dramatically
different from classical computers. Herein, a physical system based on mem-
ristors is simulated to realize associative memory based on discrete attractor
networks, which is essentially content-based storage, and the influence of device
characteristics on network performance is systematically studied. An in situ
unsupervised learning method is applied to make greater use of array structure
and competitions between neurons, demonstrating significant performance
improvement in memory capacity and noise tolerance compared with existing
supervised approaches. By extending to continuous attractor neural networks
(CANNs), working memory is realized based on memristors for the first time via
simulation, and the write and read noises in memristor arrays are found to have
different impacts on the ability of CANN in maintaining dynamic information.
This work lays a foundation for the construction of future advanced neuro-
morphic computing systems.
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and so on, mostly in supervised learning. It is therefore an
important question whether the requirements of devices in
unsupervised learning are different from supervised learning,
when using other training methods rather than backpropagation.

Furthermore, ANNs based on memristors are dedicated accel-
erators targeted for specific computing applications. It is actually
more challenging and important to build a universal neuromor-
phic computer. In this case, not only do we need to accelerate
feedforward neural network to do classification, but also need
to build brain-inspired memory, which may generate totally
new computing architectures. There are a variety of memories
in our brain, and previous studies have realized long-term mem-
ory, short-term memory, and mutual transformation of them on
single device level.[14] An interesting thing is, as for memory,
classical digital computers use address-based storage, while
our brain uses content-based storage. From the perspective of
computational neuroscience, biological neural networks always
have an effective energy function. Through recurrent connec-
tions, the activity of the network will transfer from one initial
state to a locally lowest point of energy through time, which is
called an attractor. Biological associative memory is assumed
to be stored in this abstract state. There are many memory pat-
terns stored in one neural network, which depends on the
weights of synapses.

If the attractors are discrete, an initial state will fall into the
nearest attractor. This is the model of associative memory, which
has been performed on memristor crossbar earlier.[15] However,
these previous studies used offline learning called Hebbian rule,
which means the weights of synapses had been calculated in soft-
ware and simply mapped to the memristor crossbar. The perfor-
mance of Hebbian rule is poor and unable to support large-scale
attractor networks. Other algorithms were also applied to
improve the performance,[16] but the learning process is still
offline.

By bringing in translationally invariant bell-shaped connectiv-
ity pattern, the network attractors can form a plane marvelously.
This is called a continuous attractor neural network (CANN),
which has received broad attention from both theoreticians
and experimentalists.[17] From its advent, CANN has been suc-
cessfully applied to theoretically describe the representation
and processing of continuous features in neural systems, such
as orientation,[18] head direction,[19] spatial location,[20] and so
on. Recently, experimental discoveries about Drosophila central
brain supported the existence of CANN in real biological neural
systems.[21] When it comes to memory, it is believed that the
brain can memorize the current state temporarily during
dynamic assignments and use this information to do computa-
tion afterward. This is called working memory, which can be real-
ized by a CANN naturally. In contrast, associative memory
represents as long-term learning, while working memory is
on behalf of dynamically processing temporary information
for computing. Due to the biological plausibility and powerful
computational capabilities of CANN, an early study has tried
to implement a CANN using electrical circuits based on
CMOS,[22] and recently CANN was also implemented for the
tracking function of an unmanned bicycle.[23]

In this study, an effective in situ online learning method
named Oja rule is applied in associative memory based on unsu-
pervised learning by introducing competition and cooperation

between neurons, showing that this method can get at least
10 times performance improvement, which will greatly reduce
chip area and enhance robustness of the hardware. The influence
of nonideal device characteristics including weight precision,
nonlinearity, asymmetry, device-to-device variation, and cycle-
to-cycle variation in unsupervised learning is systematically stud-
ied, and the results reveal that the weight precision has a more
significant impact compared with nonlinearity. Furthermore, for
the first time CANN is applied on neuromorphic devices to per-
form working memory based on offline training, and the impact
of device noise on the ability of CANN in maintaining dynamic
information is studied. This work will pave the way for producing
brain-like memory for future neuromorphic computing systems.

2. Results and Discussion

2.1. Discrete Attractor Network

2.1.1. Network Model

Discrete attractor neural networks, also known as Hopfield
Neural Networks, are fully connected networks, where each neu-
ron has connections with the other neurons but does not have
self-connections (Figure 1c). If the weight matrix is a symmetric
matrix and the diagonal element is 0, there must be attractors in
the network. By following Equation (1) and iterating over time,
the network will finally converge to a certain pattern according to
predefined weights of connections.

Xtþ1
i ¼ sgn

�X
j

Wij � Xt
i þ bi

�
(1)

The energy function can be defined as E ¼
� 1

2

PP
i6¼jWijX iX j, which can represent the state of the net-

work, and the energy function is always reduced or unchanged
during network operation. When all states are tiled into a 2D
plane, the energy function can form a surface (Figure 1b), where
all the minima in the hollows act as attractors. The network state
will converge to one of the attractors during evolution, and there-
fore the neurons of the network will have a determined mode
eventually.

Therefore, by setting its weights, the network has a capacity to
store data and can restore images from corrupted images. Here,
we use 50 32� 32 images selected from CIFAR 100[24] to test the
capacity of the network (Figure 1a). These images were transfor-
med into binary to clearly explain the problem, when black means
1 and white means �1. The size of the network is 1024� 1024.

As the most intensive part of computation is VMM, we can
map this network into memristor crossbar and the external cir-
cuits only need to judge the output values and send the binary
outputs back to inputs, as shown in Figure 1d. If the number of
neurons is n, the required size of synaptic weights is n� n. To
represent negative weight and simplify the operation of external
circuitry, we adopted a strategy that represents one synapse
weight using a differential pair of memristors. It is noteworthy
that the equivalent weights of diagonal line can always be set as
zero because neurons do not have self-connections. If these
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weights are set as nonzero, it can be assumed as a self feedback.
If they are set properly, the network would change into a chaotic
neural network that can solve combinatorial optimization prob-
lems,[25] namely, to find the global minimum instead of nearest
minimum. Recently, this has also been realized utilizing the
random telegraph noise in memristive devices.[26] In this asso-
ciative memory task to find nearest minimum, the input image
is corrupted with noise and the output in simulation can perfectly
get the prestored images. The methods of adding noise x is
randomly choosing one pixel inversed for x times rather than
randomly choosing x pixels inversed. Otherwise, when x equals
the total number of pixels, the corrupt image just becomes
inverse and it is not proper.

2.1.2. Oja Rule

To set the weights, we apply an advanced rule named Oja rule

Y ¼ X 0 �W (2)

ΔW 0 ¼ αðX �W 0 � Y 0Þ � Y (3)

where W is the weight matrix and α is the learning rate.
Different from the previous work using software calculated

weights, this rule can train the network online in the crossbar
and will therefore get significant performance improvement.
The main principle of this rule is to use the competition between
neurons, which is also used in locally competitive algorithm
(LCA),[27] explained as Winner Takes All (WTA). This rule needs
to use the weight matrix and transposition of weight matrix, as

backpropagation algorithm in supervised learning also needs
transposition of weight matrix. By exchange I/O port, we can
use the transposition of weight matrix in an in situ way. The com-
puting process is also shown in Figure 1d.

Oja rule is a training method, grasping the characteristics of
principal components. It needs high weight precision, and will
get more refined and functional weight structure in return. As
shown in Figure 2a, when the number of stored patterns
N> 5, the weight map of Hebbian rule has almost no change,
always following a fixed frame. In contrast, the weight map by
Oja rule has higher distribution evenness, thus owning more del-
icate weight distribution structures. As reflected in results
(Figure 2b, where lines of different colors represent different
noise levels), when the number of stored patterns is larger than
5, the recall accuracy of Hebbian rule drops abruptly, while the
recall accuracy of Oja rule still remains high even if N¼ 50.
Evidently, the neuromorphic system can still recall the full pat-
tern with high accuracy using Oja rule, even when 50 patterns are
stored and only half of the original information is given.
Therefore, the memory capacity of Oja rule is roughly 10 times
better than Hebbian rule, and the neuromorphic memory system
trained by Oja rule also has better robustness, as manifested by
the much higher noise tolerance, demonstrating overall signifi-
cant performance improvement.

2.1.3. Device Characteristics

The theoretical memristor device model in Neurosim[11] is
adopted here for the evaluation of device characteristics.

Figure 1. a) Dataset selected from CIFAR100. b) Diagram of discrete attractors, while information stored at relatively low points. c) Schematic diagram of
discrete attractor network. Each dot represents a neuron, all linked to each other. d) Implementation of associative memory on memristor array.
e) Different kinds of nonideal properties from memristive synaptic devices.
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GLTP ¼ B
�
1� e�ðSAÞ

�
þ Gmin

GLTD ¼ �B
�
1� eðS�Smax

A Þ�þ Gmax

B ¼
�
Gmax �Gmin

�.�
1þ e�

Smax
A

� (4)

Here, we mainly discuss weight precision, nonlinearity,
conductance variation, device-to-device variation, and cycle-to-
cycle variation. The detail process is shown in Figure 2c.

2.2. Continuous Attractor Neural Network

2.2.1. Network Model

CANN is a candidate for canonical models of neural information
representation and processing. Intuitively, a CANN is endowed
with a bunch of continuous attractors, which are neutrally stable
(Figure 3a). Traditionally, the dynamics of a CANN describing
head direction system can be described as[28]

8><
>:

τ ∂Uðx,tÞ
∂t ¼ �Uðx, tÞ þ ρ

R
x0
Jðx, x0Þrðx0, tÞdx0 þ Iextðx, tÞ

rðx, tÞ ¼ ½Uðx,tÞ�2þ
1þkρ

R
x0 ½Uðx0 , tÞ�2þdx0

(5)

where U(x,t) represents the total synaptic inputs of the neuron
x ðx ∈ ½�π, π�Þ at time t, r(x,t) is the instantaneous firing rate, τ is
the time constant, ρ is the neuron density, and k is the strength
of global inhibition. Jðx, x0Þ ¼ 1

2πa2 � exp½�ðx � x0Þ2=ð2a2Þ�
is the connectivity strength between neuron x and neuron x 0,
which is a translationally invariant function, ensuring the
neutral stability of those continuous attractors. Iextðx, tÞ ¼ 1

2πb2 �
exp½�ðx � x0Þ2=ð2b2Þ� is the Gaussian-shaped external input,
where x0 indicates the center of the stimulus, i.e., head direction
of the animal. Note that in this model inhibitory neurons are not

explicitly defined, while global inhibition is achieved through
divisive normalization, which may be implemented by shunting
inhibition. Under such settings, network response r(x,t) is
also a bell-shaped function, and the representation of the
head direction in the neural system is calculated through

zðtÞ ¼ P
π
x¼�π

rðx,tÞP
x0 rðx

0
, tÞ x: Due to its neutral stability, the internal

representation z(t) can smoothly track the rotation of head direc-
tion x0, while the internal representation still holds even in a dark
environment (Figure 3b).

2.2.2. Working Memory

In this study, we explore the ability of a CANN to hold persistent
activities triggered by a brief external stimulus.[29,30] Figure 3c
shows the task of working memory based on continuous attractor
neural networks in ideal situation, where the ordinate represents
the normalized strength, and the abscissa represents the number
of neurons (50 neurons from –π to π). First of all, when no noise
exists in the system, Figure 3c shows that a CANN can perfectly
hold persistent activities, i.e., the internal representation
is anchored to the center of the external stimulus and no devia-
tion is observed as time elapses (see Movie 1, Supporting
Information). Specifically, when external stimulus is applied to
the neurons, the population of neurons will respond to it and
obtain the shape and central position of the stimulus; after
the external stimulus is removed, the neuron population can still
remember the previous shape and central position of stimulus
(Figure 3c). However, in electronic neuromorphic systems, there
are three major problems in offline learning, namely, weight
precision, write noise, and read noise. Regarding the weight
precision, offline learning usually has much lower precision
requirements than online learning. In addition, it is the network
structure that ensures ability of CANN in working memory
rather than the weight distribution. It is found that CANN

Figure 2. a) Weight array under different storage capacity requirements. The above is Hebbian rule. The bottom is Oja rule. b) The comparison between
Oja rule and Hebbian rule. Lines of different colors represent different levels of noise. c) The process of considering nonideal effects of devices.
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can even work under any weight matrix of arbitrary precision,
including 1-bit. When programming connection strengths of
the network onto memristor crossbars, the weight matrix may
have some nonideal factors even after multiple verifications,
embodied in the difference between conductance values and
target values (write noise, Figure 3d). In addition, the parasitic
effects and thermal fluctuations during reading also affect the
final result (read noise). A CANN based on memristor model
is therefore set up to analyze the tolerance of neuromorphic
computing to the aforementioned imperfections. The dynamic
location of the network center after the external stimulus is
withdrawn can therefore reflect the reliability of neuromorphic
computing in this dynamic working memory.

2.3. Influence of Device Characteristics

The influence of device imperfections on the implementations of
associative memory and working memory was systematically
studied, as shown in Figure 4 and 5. As shown in Figure 4a,
when the weight precision is lower than 6-bit, Oja rule cannot
work properly. However, once the weight precision is higher
than 6-bit, the attractor network has better performance than
the network based on Hebbian rule, as shown in Figure 2b.
Figure 4b further shows that the training based on Oja rule
has greater endurance to nonlinearity (>2) than backpropagation
because previous results by Chen et al. have shown a dramatic
performance drop when the nonlinearity exceeds 1.5 using back
propagation.[11] Figure 4c shows the real weight matrix distri-
bution of memristor crossbar (with weight bit of 10, nonlinearity

of 1.5, N¼ 20), where one can see that nonideal effects of the
devices increase the deviation of adjacent weights in the mem-
ristive crossbar.

A universal model of working memory based on memristive
neuromorphic systems has also been set up, and Figure 5 shows
the simulation results. Through simulating weight matrix with
different weight precisions, it is verified that CANN can be easily
implemented by neuromorphic devices. As shown in Figure 5a,
even simplest binary devices can realize CANN, just by mapping
the conductance to þ1 and 0. The maximum tolerance of write
noise in this assignment is 5%, as shown in Figure 5b, which can
be realized by closed-loop verifications during programming or
adding transistors to regulate the currents. The maximum
tolerance of read noise in this assignment is 10% (Figure 5c).
It is worth mentioning that the write noise and read noise have
different impacts on network activities. The existence of write
noise will reshape the response activity. Figure 5d shows that
the network activity with write noise of 0.1 becomes sharper.
When the write noise is stronger (e.g., 0.3), the single peak of
neuronal activities will even split into multiple peaks (see
Movie 2, Supporting Information). In contrast, the existence
of read noise (with an amplitude of 0.1) will make the location
of peak drift with the overall shape almost kept unchanged
(Figure 5e). When the read noise is stronger (e.g., 0.3), the peak
drifts faster within a larger range (see Movie 3, Supporting
Information). It may explain why people could be distracted
because the working memory is originally temporary memory
for the next computing tasks and in this situation its peak is
shifted all the time.

Figure 3. a) Descent toward continuous attractors, as well as neutral equilibrium between these attractors. b) Schematic diagram of continuous
attractor network, which has self-sustained activities based on the interaction of positive connection and group inhibition. c) Ideal working memory.
The x-axis means neuron ID (x in Equation (5)) and the y-axis represents normalized value of external stimulus Iext (red curve) and network
response r (blue curve). The external stimulus lasts from t¼ 0 to t¼ 50, the center of which represents a direction. The external stimulus induces network
responses, the center of which represents the encoding of that direction by the neural network (t¼ 5, t¼ 45). After the external stimulus is withdrawn,
the network still holds the dynamic memory (t¼ 55, t¼ 250). d) Conductance matrix mapped on the memristor array, without noise (left) and with
noise (right).
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3. Conclusion

Biologically inspired and plausible neural networks have always
been the ultimate goal of neuromorphic computing. Previous
studies have shown that supervised learning can be capable of
classification and regression. In this work, a new unsupervised
learning algorithm is adopted and implemented on associatiove
memory. From the perspective of actual function and efficiency,
associative memory is essentially a kind of content-based storage.
There are other methods based on memristors in realizing
content-based storage, but these methods still need a searching
algorithm with computational complexity N, while the iteration
number of attractor network is only logN. As for working

memory, it has been considered an effective way to approaching
the edge of chaos’s decision because it can dynamically accept
input from outside and can maintain the information itself.
Here, associative memory and working memory are realized
based on discrete and continuous attractor networks, respec-
tively, and the influence of device characteristics on network per-
formance is systematically studied. The in situ online training
demonstrates significant performance improvement in memory
capacity and noise tolerance. By cascading CANN with other
computing units, such as reservoir computing, the total system
can have better dynamic information processing capability
because CANN can constrain external input into a specific form
and be able to temporarily remember external stimulus in the

Figure 4. a) The impact of weight bit on storage capability. b) The impact of nonlinearity to storage capability. c) Weight matrix based on the device model
in associative memory. (bit¼ 10, nonlinearity¼ 1.5, stored pattern N¼ 20).

Figure 5. a) The influence of weight precision on network activity. b) The influence of off-line write noise on network activity based on weight matrix of full
precision. c) The influence of read noise on network activity based on weight matrix of full precision. d) The write noise reshapes the pattern of network
activity. e) The read noise sways the pattern of network activity. f ) The influence of read noise on network activity based on single-bit weight matrix.
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network level. Previous studies have shown the application
of memristors in reservoir computing,[31] and suggested that
combination of discrete attractor neural network with reservoir
computing can have better performance, showcased by the gen-
eration of handwritten numbers.[32] Using attractors to constrain
the complex dynamics in reservoir will help the computing
system converge faster and avoid sustained oscillations. The real-
ization of brain-inspired content-based storage may facilitate the
development of real neuromorphic systems.
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the author.
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